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Equations (2.7) and (2.8) imply that when h -, x) , the value of Nr, coincides with that 
obtained in the problem on splitting an elastic plane with a wedge of finite width [S]. 

Moreover, when h -, DC , the expression (2.4). with (2.2) taken into account, defining 
Y (5) coincides with the analogous expression obtained in [S]. 
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The theory of limit equilibrium of a perfectly plastic body n] usually deals with the 
systems possessing a finite number of degrees of freedom. The results obtained for the 

models of finite dimensions can be extended to the problems of limit equilibrium of 

solid bodies, using the methods of mathematical programing. 
In the present paper we consider a perfectly plastic body of finite volume 11~ with sur- 

face S. A load proportional to the parameter P is applied at a part of the surface deno- 
ted by S,_ Conditions of zero displacements ui = 0 (i = 1,2,3) (u cienotes the rate of 
displacement vector) are given at the remainder S, of the surface. The stress field must 

satisfy the equations of equilibrium and the following boundary conditions on S, 
Gij, i = 0, sijvj - Phi = 0 (1) 

Conditions of plasticity are assumed to have the form of a convex operator f(o) << 0. 
Under these conditions the problem of limit equilibrium in static formulation consists 
in determination of P* = sup t)(a). This corresponds to the generalized Lagrange’s 
functional /J2] 
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L (P, (I, u, A) = P + s [uruij,j - hf (a)] dv + ui (urjvj - Pki) ds 
V 

s 
S 

The generalized saddle point 

L* = sup inf L (P, a, U, h) 
P.0 u,A 

(J+ z 0) (3) 

corresponds to the limiting static load. 
The transposed extremal procedures which also define a saddle point 

L**=infsupL(P u u h) I , , (h>/O). 
u,h P,O 

(4) 

corresponds to the limiting kinematic load. 
The saddle points (L* = L** = P*) will coincide when the conditions of plasticity 

have the form of the plastic potential, i. e. when there exists an associated law of plastic 
flow Eif = hdfidoij where h > 0 denote the plasticity parameters and Eij denote the 
components of the rate of plastic deformation tensor. 

The integrals appearing in (2) should naturally be regarded as linear functionals in a 

Hilbert space. Thus we can say that u is the element of the space of displacements H, 

o E H,, where Ha is a stress space operator-conjugated with H,,. Let us select from H,, 

a basis {‘pl, rf+..} such that cpo= 0 (3 = 1,2,...) on s,. Expansion of the rates of displa- 
cement over this basis satisfies the condition of zero displacement on S, 

Ui = c zi%a (i = 1, 2,3) (5) 
OL 

The equation of the amount of work performed by the internal and external forces is 

c 
t 

Diieijdv - P 
c 
rs 

kpds = 0 

and substitution of (5) into the latter yields 

bijcpaljdv -P (6) 

The fact that the stress field under which (6) holds for any uEH,, is feasible from 

the point of view of statics, can be proved as follows. Integrating (6) by parts we obtain 

2 (S =,= Ta (y$ - Pk,) ds - 
c ) 

qaaij,jdv = 0 (7) 
a S + 

If the stress field is feasible from the point of view of statics (i.e. Eqs. (1) hold), then 

(7) becomes an identity for any Zia .Consequently (6) must hold for any xia , and splits 

into separate equations * s ‘ij’Pa,jdV - P kicp,ds = 0 
s 

(i=i,2,3; u=2,2 )... ) 

V S 

The above set of equations is equivalent to (1) and can be obtained, when the discon- 

tinuities in the stress field are orthogonal to the discontinuities in the rate of deforma- 

tion field. We can also obtain (8) from the condition 8L / 8x1 = 0 for the functional (2). 
which corresponds to the operation inf in (3). 

Suppose that a basis {qlil, I&...} exists in H,, for which the conditions Levi = caki 
(i = 1, 2,3; fj = 1, 2, . ..) hold on s Here ca are any numbers including zero, restricted 
by the inequality lcrl + lcpl f . . . ,“L. Expansion of the stresses over such a basis satis- 
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fies the following conditions on S, for some value of the parameter P : 

5ij = 2 Cij'$b? 6ij~j = ki 2,~ (9) 
P B 

Here cija are tensors symmetrical in their subscripts. Substitution of (9) into (8) yields 
the following set of linear equations : 

11 3 

2 2 $Phj~~-Ppia=O (i=1,2,3; a=1 ,..., m) (W 
B=l j-1 

for which the expansions (5) and (9) are assumed finite and containing m and n terms 

respectively. When 2n > m , the set (10) admits a nonunique solution o (n, m) converg- 
ing on the norm of H, to a stress field feasible from the point of view of statics. When 

n = m, this set becomes underdefined 3n times in the three-dimensional case, n times 

in the two-dimensional case, and is definable in the one-dimensional case. This com- 

plies with the order of nondefinability of the differential equations of equilibrium. 
The sequence of static solutions of the problem corresponding to the saddle point (3) 

is obtained in the form of a sequence P(n, m) = sup P(a) with the conditions (10) and 

f (jl 6,js+P)Go (1’) 

With m fixed the sequence P(n,m) increases monotonously. We prove this as follows. 
Suppose two expansions (9) exist, one containing 1 terms, the other ( n<l ) terms. The 

inequality (11) defines in H, convex closed regions San and Q1 situated in the linear enve- 

lopes embracing {I#~,..., $,I and (ql,..., ‘$,,,..., $11, The convexity and the inclusion 
of the first basis in the second imply that Qnis contained in QL (Q*c L?). Since the 
number of equations in (10) is fixed, it follows that a(n, m) c IS (I,m). Under these con- 

ditions the inequality P(n, m) > P(l, m) would violate the static limit equilibrium 
theorem. Consequently the sequence P(n, m) does not diminish with increasing n and 

by virtue of its boundedness has the following limit 

p(m) = lim P(n,m) (n -+ m) (12) 

Denoting now the linear envelope of the functions {cpl,... , cpm} by R, we find that 
P(m) represents the saddle point of the Lagrangian functional (3) provided that u E R,. 

By duality.P(m)also represents the saddle point of (4) provided again that u E R,. But 
then R, expands to H, with increasing m , while the sequence P(m) cannot increase and 

has a limit given by P* = lim P (m) = lim lim P (n, m) (13) 7ll- m-r, ‘ll.--roo 

The above limits are not interchangeable, if only for the condition 2n > m which 
makes solution of (10) possible. The convergence of P(n, m) to P(m) and of P (m) to 
P* implies the existence of the inequalities 

I P+ - p(m) I < em, I p(m) - P(n,m) I d enm 

which in turn imply that 

I p* - P(n, m) 1 = 1 P* - P(m) + P(m) - Phm) I G e, + En, 

This indicates that the sequence Ptn, m) converges to P* when n and m (2n > m) 
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increase simultaneously 
P* = Iim Pfn, m) (n+ M3, m 3 03) (14) 

In this case the convergence is not monotonous and correponds to the method which 

could be called “mixed” in analogy with the static and kinematic methods for which 

the sequences P(n,m) and P(m) are monotonous. 

The limit solution of the problem, often called the optimal plan, defines the saddle 
point L*(P*, a*, u*, h*). A unique solution L* = P*,exists for this point, as well as for 
u* and h* connected by the law governing the flow. In the plastic regions where f(o*)= 

= 0 the distribution of stress is unique, in the rigid regions on the other hand in which 

f(a*)<O, the stress distribution is determined with accuracy of up to the self-balanced 
field o” satisfying the homogeneous conditions uilovj = 0 on S, , The condition of plas- 

ticity f(o* + o”) < 0 must bold for o” in the rigid region, and a converging sequence 
for the stresses can therefore be constructed by solving an incorrect programing problem 

after Tikhonov [3]. This means that the constraints (10) and (11) will be imposed not on 
P(a), but on the regularized functional 

M, (P, 8) = P - CtnW (an) (15) 

representing the required function whose maximum is being sought. Here a, > 0 and 
a, + 0 as n. -+ 30, while ~(a”) is a stabilizing functional such as e. g, a suitably desig- 

nated norm /I u 11. In the present problem \I (I \\ can be determined in the S. L. Sobolev 
space WE2. The sequence on* will then converge uniformly on the intervals of continuous 
differentiability provided that 

M, IP (n, m), o*+1 = sup (P- cln 11 on II”) 

For an incompressible material the norm of the stress tensor can be found in terms of 
the devrator Sij 

I( o 11” = \ (StiSii f r’ij,kl’ij,kt) dv 
V 

(Sij = Qij - % 1 

where r is some positive function used to coordinate the dimensionality of the integrand. 

The quantity on* and its first order derivatives converge uniformly on the segments of 

continuous differentiability to some optimal o * and the second order derivatives converge 

in the mean. All the above processes are accurate to within the hydrostatic pressure term. 
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